

Implementations of Post-Quantum Cryptography Algorithms Secured Against Physical Attacks

CALLE VIERA Andersson Director : VERGNAUD Damien Supervisor: BERZATI Alexandre Almasty Workshop 2024, 12 Jul. 2024

¹ Thales DIS, France ² Sorbonne Université, France

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All tights reserved.

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented **securely** in a variety of use cases

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

Study PQC	Too big overhead for embedded systems Implement Securely
х х х х	
x x x x	
* *	
A A A	
* *	
* *	

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

ate: 97211148-DOC-GPP-EN

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

Template: 87211168-DOC-GRP-EN-006

document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

Template: 87211168-DOC-GRP-EN-006

acument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclased to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

NIST: National Institute of Standards and Technology

> 2024: First KEM (Kyber) and DSA (Dilithium/Falcon/SPHINCS+) standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

Template: 87211168-DOC-GRP-EN-006

ocument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Side Channel and Fault Attacks

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All sights reserved.

Side Channel and Fault Attacks

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Dilithium	
	M-LWE
Public key signature algorithm, based on hard problems on Lattices	<
• Easy to implement and secret-independent execution time	M-SIS
ка ка ка ка	
к. ж. ж. к. ж. ж.	
х ж ж ж	

Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES © 2023 THALES. All rights reserved.

Dilithium

- \bullet Public key signature algorithm, based on hard problems on Lattices <
- Easy to implement and secret-independent execution time
- Three security levels: Dilithium-2, Dilithium-3, Dilithium-5
- Two versions: deterministic and hedged (randomized)

OPEN

Template: 87211168-DOC-GRP-EN-006

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

M-LWE

M-SIS

Dilithium

- ullet Public key signature algorithm, based on hard problems on Lattices<
- Easy to implement and secret-independent execution time
- Three security levels: Dilithium-2, Dilithium-3, Dilithium-5
- Two versions: deterministic and hedged (randomized)
- Quotient Ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n+1)$ where $n = 2^8$ and $q = 2^{23} 2^{13} + 1$
 - > Most of the time we work with vectors of k or l elements in \mathcal{R}_q
 - > Polynomial multiplication using the Number Theoretic Transform (NTT)

cournent may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or dictored to a third party without the prior withen concent of THALES @ 2023 THALES. All rights reserved
Implementations of, Post-Quantum Cryptography, Algorithms, Secured Against, Physical Attacks

M-LWE

M-SIS

KeyGen:

2
$$(s_1, s_2) \in S^l_\eta imes S^k_\eta$$

$$3 t = A s_1 + s_2 \in \mathcal{R}_q^k$$

4
$$(t_1, t_0) = Power2Round(t, d)$$

5 return
$$pk = (A, t_1), sk = (A, s_1, s_2, t_0, pk)$$

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

KeyGen:

1 $A \in \mathcal{R}^{k \times l}_{a}$ 2 $(s_1, s_2) \in S_n^l \times S_n^k$

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

1
$$A \in \mathcal{R}_{q}^{k \times l}$$

2 $(s_{1}, s_{2}) \in S_{\eta}^{l} \times S_{\eta}^{k}$
3 $t = A s_{1} + s_{2} \in \mathcal{R}_{q}^{k}$
4 $(t_{1}, t_{0}) = \text{Power2Round}(t, d)$
5 return $pk = (A, t_{1}), sk = (A, s_{1}, s_{2}, t_{0}, pk)$

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

5 return
$$pk = (A, t_1), sk = (A, s_1, s_2, t_0, pk)$$

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

5 return
$$pk = (A, t_1), sk = (A, s_1, s_2, t_0, pk)$$

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

5 return
$$pk = (A, t_1)$$
, $sk = (A, s_1, s_2, t_0, pk)$

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

5 return
$$pk = (A, t_1), sk = (A, s_1, s_2, t_0, pk)$$

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

July 12, 2024

Sign(
$$M$$
, $sk = (A, s_1, s_2, t_0, pk)$):
1 $(z,h) = \bot$
2 while $(z,h) = \bot do$
3 $y \in \tilde{S}_{\gamma_1}^l$
4 $w = Ay$
5 $w_1 = \text{HighBits}(w)$
6 $c \in B_\tau = H(pk || M || w_1)$
7 $z = y + c s_1$
8 $r_0 = \text{LowBits}(w - c s_2)$
9 if $||z||_{\infty} \ge \gamma_1 - \beta$ or $||r_0||_{\infty} \ge \gamma_2 - \beta$, then $(z,h) = \bot$
10 else
11 $h = \text{MakeHint}(-c t_0, w - c s_2 + c t_0)$
12 if $||c t_0||_{\infty} \ge \gamma_2$, then $(z,h) = \bot$
13 return $\sigma = (c, z, h)$

Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, hanelated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES © 2023 THALES. All rights reserved.

```
Sign(M, sk = (A, s_1, s_2, t_0, pk)):
               y \in \tilde{S}_{\alpha_1}^l
       3
       4
               w = A v
       5
              w_1 = \text{HighBits}(w)
       6
               c \in B_{\tau} = \operatorname{H}(pk || M || w_1)
     13 return \sigma = (c, z, h)
```

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

```
Sign(M, sk = (A, s_1, s_2, t_0, pk)):
               y \in \tilde{S}_{\infty}^l
        3
        4
               w = A v
        5
               w_1 = \text{HighBits}(w)
        6
                 c \in B_{\tau} = \operatorname{H}(pk || M || w_1)
        7
                 z = y + c s_1
                 if ||z||_{\infty} \geq \gamma_1 - \beta or ||r_0||_{\infty} \geq \gamma_2 - \beta, then (z, h) = \bot
        9
      10
                 else
      13 return \sigma = (c, z, h)
```

sublished translated in any wa whole or in part or disclosed to a third party without the prior witten consent of THALES @ 2023 THALES. All datas reserved Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Sign $(M, sk = (A, s_1, s_2, t_0, pk))$: $y \in \tilde{S}_{\alpha_1}^l$ 3 4 w = A v5 $w_1 = \text{HighBits}(w)$ 6 $c \in B_{\tau} = \operatorname{H}(pk || M || w_1)$ 7 $z = v + c s_1$ $r_0 = \text{LowBits}(w - c s_2)$ 8 if $||z||_{\infty} \geq \gamma_1 - \beta$ or $||r_0||_{\infty} \geq \gamma_2 - \beta$, then $(z, h) = \bot$ 9 10 else 13 return $\sigma = (c, z, h)$

emplate: 87211168-DOC-GRP-EN-006

ument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Sign(
$$M$$
, $sk = (A, s_1, s_2, t_0, pk)$):
1 $(z,h) = \bot$
2 while $(z,h) = \bot do$
3 $y \in \tilde{S}_{\gamma_1}^l$
4 $w = Ay$
5 $w_1 = \text{HighBits}(w)$
6 $c \in B_\tau = H(pk || M || w_1)$
7 $z = y + c s_1$
8 $r_0 = \text{LowBits}(w - c s_2)$
9 if $||z||_{\infty} \ge \gamma_1 - \beta$ or $||r_0||_{\infty} \ge \gamma_2 - \beta$, then $(z,h) = \bot$
10 else
11 $h = \text{MakeHint}(-c t_0, w - c s_2 + c t_0)$
12 if $||c t_0||_{\infty} \ge \gamma_2$, then $(z,h) = \bot$
13 return $\sigma = (c, z, h)$

Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, hanelated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES © 2023 THALES. All rights reserved.

Verify $(pk = (A, t_1), M, \sigma = (c, z, h))$:

· · ·

- A A A
- ~ ~ ~ ~

1 $w'_1 = \text{UseHint}(h, Az - ct_12^d)$

. . . .

- • •
- ~ ~ ~
- · · ·
- . . .
-
-
-
-

. . .

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Verify
$$(pk = (A, t_1), M, \sigma = (c, z, h))$$
:

$$1 w'_1 = \text{UseHint}(h, \overline{Az - ct_12^d})$$

*

OPEN

Template: 87211168-DOC-GRP-EN-006

Implicities of 2011 resolution of the reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

$$Verify(pk=(A, t_1), M, \sigma=(c, z, h)):$$

$$Az - ct_12^d = A(y + cs_1) - c(As_1 + s_2 - t_0)$$

$$1 w'_1 = UseHint(h, Az - ct_12^d)$$

Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior witten corsent of THALES @ 2023 THALES. All sights reserved.

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Verify
$$(pk = (A, t_1), M, \sigma = (c, z, h))$$
:
 $Az - ct_1 2^d = A (y + cs_1) - c (As_1 + s_2 - t_0)$
 $= Ay - cs_2 + ct_0$
Lemma 1.1 [1] \implies UseHint $(h, w - cs_2 + ct_0)$ = HighBits $(w - cs_2)$
1 $w'_1 =$ UseHint $(h, Az - ct_1 2^d)$
[1] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé, CRYSTALS - Dilithium: Digital Signatures from Module Lattices

Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES © 2023 THALES. All rights reserved.

Verify
$$(pk = (A, t_1), M, \sigma = (c, z, h))$$
:

$$Az - ct_1 2^d = A (y + cs_1) - c (As_1 + s_2 - t_0)$$

$$= Ay - cs_2 + ct_0$$

$$= w - cs_2 + ct_0$$
Lemma 1.1 [1] \Rightarrow UseHint $(h, w - cs_2 + ct_0)$ = HighBits $(w - cs_2)$
Lemma 2 [1] \Rightarrow HighBits $(w - cs_2)$ = HighBits_q (w)
1 w'_1 = UseHint $(h, Az - ct_1 2^d)$

Template: 87211168-DOC-GRP-EN-006
This document may not be reproduced, modified, adapted, published, translated, in any way, in whate ar in part or disclated to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Verify
$$(pk = (A, t_1), M, \sigma = (c, z, h))$$
:

$$Az - ct_1 2^d = A (y - cs_1) - c (As_1 + s_2 - t_0)$$

$$= Ay - cs_2 + ct_0$$

$$= w - cs_2 + ct_0$$
Lemma 1.1 [1] \implies UseHint $(h, w - cs_2 + ct_0) =$ HighBits $(w - cs_2)$
Lemma 2 [1] \implies HighBits $(w - cs_2) =$ HighBits_q (w)

$$= w_1$$
1 $w_1' =$ UseHint $(h, |Az - ct_1 2^d)$
2 if $||z||_{\infty} < \gamma_1 - \beta$ and $c = H(pk ||M|| w_1')$ and # 1's in $h \le \omega$
3 return *True*
4 else
5 return *False*
[1] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé, CRYSTALS - Dilithium: Digital Signatures from Module Lattices

Template: 87211168-DOC-GRP-EN-006

Implicities of 2011 resolution of the reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Optimizing Dilithium Signature Scheme

- Key size larger than secure element RAM size (≈ 30 kB)
- A lot of RAM consumption for the 3 security levels of Dilithium
 - > Each polynomial is 256×4 bytes, so 1kB/polynomial
 - > Matrix A of $k \times l$ polynomials with k and l up to 8 and 7!

Template: 87211168-DOC-GRP-EN-006

nt may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Optimizing Dilithium Signature Scheme

- Key size larger than secure element RAM size (≈ 30 kB)
- A lot of RAM consumption for the 3 security levels of Dilithium
 - > Each polynomial is 256×4 bytes, so 1kB/polynomial
 - > Matrix A of $k \times l$ polynomials with k and l up to 8 and 7!

- Main idea: perform operations polynomial-wise instead of vector-wise
- Proprietary implementation conform to standard Dilithium
- Up to 30% reduction for Dilithium-5
- \bullet Only $\approx 3\%$ slower in average

OPEN

Template: 87211168-DOC-GRP-EN-006

tocument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or diclosed to a third party without the prior written consent of THALES @ 2023 IHALES. All rights reserved. Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Authors: BERZATI Alexandre, CALLE VIERA Andersson, CHARTOUNI Maya, MADEC Steven, VERGNAUD Damien, VIGILANT David

Suppose an attacker has access to several signatures $\sigma = (c, z, h)$

A

$$z - c t_1 2^d = A (y + c s_1) - c (A s_1 + s_2 - t_0)$$

= $\underbrace{A y}_{w} - cs_2 + ct_0$
= $w_1 2 \gamma_2 + w_0 + c(t_0 - s_2)$

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All tights reserved.

Authors: BERZATI Alexandre, CALLE VIERA Andersson, CHARTOUNI Maya, MADEC Steven, VERGNAUD Damien, VIGILANT David

Suppose an attacker has access to several signatures $\sigma = (c, z, h)$

$$A z - c t_1 2^d = A (y + c s_1) - c (A s_1 + s_2 - t_0)$$

= $\underbrace{A y}_{w} - cs_2 + ct_0$
= $w_1 2 \gamma_2 + w_0 + c(t_0 - s_2)$

• Assuming an attacker is able to distinguish when $(w_0)_i = cst$ then

$$(A z - c t_1 2^d)_i = (w_1)_i 2 \gamma_2 + cst + (c (t_0 - s_2))_i$$

OPEN

Template: 87211168-DOC-GRP-EN-006

s document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Authors: BERZATI Alexandre, CALLE VIERA Andersson, CHARTOUNI Maya, MADEC Steven, VERGNAUD Damien, VIGILANT David

Suppose an attacker has access to several signatures $\sigma = (c, z, h)$

$$A z - c t_1 2^d = A (y + c s_1) - c (A s_1 + s_2 - t_0)$$

= $\underbrace{A y}_{w} - c s_2 + c t_0$
= $w_1 2 \gamma_2 + w_0 + c(t_0 - s_2)$

• Assuming an attacker is able to distinguish when $(w_0)_i = 0$ then

$$(A z - c t_1 2^d)_i = (w_1)_i 2 \gamma_2 + 0 + (c (t_0 - s_2))_i$$

OPEN

Template: 87211168-DOC-GRP-EN-006

document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Authors: BERZATI Alexandre, CALLE VIERA Andersson, CHARTOUNI Maya, MADEC Steven, VERGNAUD Damien, VIGILANT David

Suppose an attacker has access to several signatures $\sigma = (c, z, h)$

$$A z - c t_1 2^d = A (y + c s_1) - c (A s_1 + s_2 - t_0)$$

= $\underbrace{A y}_{w} - cs_2 + ct_0$
= $w_1 2 \gamma_2 + w_0 + c(t_0 - s_2)$

• Assuming an attacker is able to distinguish when $(w_0)_i = 0$ then

$$(A z - c t_1 2^d)_i = (w_1)_i 2 \gamma_2 + 0 + (c (t_0 - s_2))_i$$
$$s_1 = (A^t A)^{-1} A^t (t_1 2^d + (t_0 - s_2))$$

Knowing s₁ suffices to sign arbitrary messages

OPEN

emplate: 87211168-DOC-GRP-EN-006

cument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

July 12, 2024

Dilithium Secret Key Retrieval

Learning phase 700 K traces

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All sights reserved.

Dilithium Secret Key Retrieval

Learning phase 700 K traces

Matching phase min. 1 trace per msg

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in which e rin part or disclosed to third party without the prior written consent of THALES 2003 THALES. All rights reserved. Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Template: 87211168-DOC-GRP-EN-004

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

emplate: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

mplate: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

emplate: 87211168-DOC-GRP-EN-006

ment may not be reproduced, modified, adopted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior witten consent of THALES @ 2023 THALES. All rights reserved. Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Authors: BERZATI Alexandre, CALLE VIERA Andersson, HEYDEMANN Karine

- Sensitivity Analysis of standard implementation of Verify
- Analyze usually unprotected operations
- Main idea: make ct_12^d smaller than it is

1 w'_1 = UseHint $(h, Az - ct_12^d)$

OPEN

Template: 87211168-DOC-GRP-EN-006

ent may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Authors: BERZATI Alexandre, CALLE VIERA Andersson, HEYDEMANN Karine

- Sensitivity Analysis of standard implementation of Verify
- Analyze usually unprotected operations
- Main idea: make ct_12^d smaller than it is

1 $w'_1 = \text{UseHint}(h, Az - ct_1 2^d)$ Zeroize polynomial $c \leftarrow$

OPEN

Template: 87211168-DOC-GRP-EN-006

sument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Authors: BERZATI Alexandre, CALLE VIERA Andersson, HEYDEMANN Karine

- Sensitivity Analysis of standard implementation of Verify
- Analyze usually unprotected operations
- Main idea: make ct_12^d smaller than it is

1 $w'_1 = \text{UseHint}(h, Az - Ct_12)$ Zeroize polynomial $c \leftarrow$ Change the exponent $d \leftarrow$

OPEN

Template: 87211168-DOC-GRP-EN-006

acument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- Authors: BERZATI Alexandre, CALLE VIERA Andersson, HEYDEMANN Karine
- Sensitivity Analysis of standard implementation of Verify
- Analyze usually unprotected operations
- Main idea: make ct_12^d smaller than it is


```
Skip the subtraction \leftarrow

1 w'_1 = \texttt{UseHint}(h, Az \ominus Ct_1 2^d)

Zeroize polynomial c \leftarrow

Change the exponent d \leftarrow
```


Template: 87211168-DOC-GRP-EN-006

document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- Authors: BERZATI Alexandre, CALLE VIERA Andersson, HEYDEMANN Karine
- Sensitivity Analysis of standard implementation of Verify
- Analyze usually unprotected operations
- Main idea: make ct_12^d smaller than it is


```
Skip the subtraction 

\mathbf{1} \ w_1' = \underbrace{\texttt{UseHint}(h, Az \ominus Ct_1 2^d)}_{\text{Zeroize polynomial } c}
Change the exponent d
```

- Allow to accept false signatures with few simple faults
- Simple and efficient countermeasures presented

OPEN

emplate: 87211168-DOC-GRP-EN-006

ocument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \ge \gamma_2 \beta$, use case: fault attacks

```
Ay \in \llbracket 0,q \llbracket
```

```
From the specification -\beta \leq cs_2 \leq \beta, wlog. suppose 0 < cs_2
```

```
LowBits(Ay - cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay - cs_2)
```

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \ge \gamma_2 \beta$, use case: fault attacks $Ay \in [0, q]$
 - From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$

```
LowBits(Ay - cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay - cs_2)
```


Template: 87211168-DOC-GRP-EN-006

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \ge \gamma_2 \beta$, use case: fault attacks

```
Ay \in \llbracket 0,q \llbracket
```

From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$

```
\mathsf{owBits}(Ay - cs_2) + cs_2 \ge \gamma_2 \ge \mathsf{LowBits}(Ay - cs_2)
```


plate: 87211168-DOC-GRP-EN

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All lights reserved.
Implementations of, Post-Quantum Cryptography, Algorithms, Secured Against, Physical Attacks

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \geq \gamma_2 \beta$, use case: fault attacks
 - $Ay \in \llbracket 0,q \llbracket$
 - From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$
 - $LowBits(Ay cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay cs_2)$

Template: 87211168-DOC-GRP-EN-006

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \geq \gamma_2 \beta$, use case: fault attacks
 - $Ay \in \llbracket 0,q \rrbracket$
 - From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$
 - $LowBits(Ay cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay cs_2)$

Template: 87211168-DOC-GRP-EN-006

nent may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \geq \gamma_2 \beta$, use case: fault attacks
 - $Ay \in \llbracket 0,q \llbracket$

From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$

 $LowBits(Ay - cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay - cs_2)$

Oren

Template: 87211168-DOC-GRP-EN-006

ent may not be reproduced, modified, adapted, published, inany way, in whole or in part or disclosed to a third party without the prior withen consent of THALES @ 2023 THALES. All rights reserved Implementations of, Post-Quantum Cryptography, Algorithms, Secured Against, Physical Attacks

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \geq \gamma_2 \beta$, use case: fault attacks
 - $Ay \in [\![0,q[\![$

From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$

 $LowBits(Ay - cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay - cs_2)$

Template: 87211168-DOC-GRP-EN-006

current may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

- Authors: AZEVEDO OLIVEIRA Paco, CALLE VIERA Andersson, COGLIATI Benoit GOUBIN Louis
- Dilithium Sign without condition $||r_0||_{\infty} \geq \gamma_2 \beta$, use case: fault attacks
 - $Ay \in [\![0,q[\![$

From the specification $-\beta \leq cs_2 \leq \beta$, wlog. suppose $0 < cs_2$

 $LowBits(Ay - cs_2) + cs_2 \ge \gamma_2 \ge LowBits(Ay - cs_2)$

Template: 87211168-DOC-GRP-EN-006

sument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

Solving the inequalities Remember that, $s_2 = ((s_2)_0 x^0 + (s_2)_1 x^1 + \dots + (s_2)_{255} x^{255}) = \sum (s_2)_a x^a$. Remember that, $s_2 = ((s_2)ax^a + (s_2)ax^a) = \sum_{a=0}^{255} (s_2)_a (cx^a)$ Therefore, $cs_2 = c \left(\sum_{a=0}^{255} (s_2)_a x^a\right) = \sum_{a=0}^{255} (s_2)_a (cx^a)$ BUT, inequality on only one $j \in [[0, 256[[, so: <math>(cs_2)_j = \left(c \left(\sum_{a=0}^{255} (s_2)_a x^a\right)\right)_j = \sum_{a=0}^{255} (s_2)_a (cx^a)_j$

OPEN

Template: 87211168-DOC-GRP-EN-006

ent may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Solving the inequalities

Remember that,
$$s_2 = ((s_2)_0 x^0 + (s_2)_1 x^1 + \dots + (s_2)_{255} x^{255}) = \sum_{a=0}^{255} (s_2)_a x^a$$
.
Therefore, $cs_2 = c \left(\sum_{a=0}^{255} (s_2)_a x^a\right) = \sum_{a=0}^{255} (s_2)_a (cx^a)$
BUT, inequality on only one $j \in [0, 256[]$, so: $(cs_2)_j = \left(c \left(\sum_{a=0}^{255} (s_2)_a x^a\right)\right)_j = \sum_{a=0}^{255} (s_2)_a (cx^a)_j$

255

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Solving the inequalities

Remember that,
$$s_2 = ((s_2)_0 x^0 + (s_2)_1 x^1 + \dots + (s_2)_{255} x^{255}) = \sum_{a=0}^{255} (s_2)_a x^a$$
.
Therefore, $cs_2 = c \left(\sum_{a=0}^{255} (s_2)_a x^a\right) = \sum_{a=0}^{255} (s_2)_a (cx^a)$
BUT, inequality on only one $j \in [0, 256[]$, so: $(cs_2)_j = \left(c \left(\sum_{a=0}^{255} (s_2)_a x^a\right)\right)_j = \sum_{a=0}^{255} (s_2)_a (cx^a)_j$

255

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclared to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Solving the inequalities Remember that, $s_2 = ((s_2)_0 x^0 + (s_2)_1 x^1 + \dots + (s_2)_{255} x^{255}) = \sum (s_2)_a x^a$. Remember that, $s_2 = ((s_2)_{ax^a} + (s_2)_{ax^a}) = \sum_{a=0}^{255} (s_2)_a (cx^a)$ Therefore, $cs_2 = c \left(\sum_{a=0}^{255} (s_2)_a x^a\right) = \sum_{a=0}^{255} (s_2)_a (cx^a)$ BUT, inequality on only one $j \in [0, 256[]$, so: $(cs_2)_j = \left(c \left(\sum_{a=0}^{255} (s_2)_a x^a\right)\right)_j = \sum_{a=0}^{255} (s_2)_a (cx^a)_j$

- Collect enough inequalities ($\approx 11\,000$ over $1\,250\,000$ signatures)
- Solve the corresponding LP problem
- Round the result to get the correct solution

Future Work

- Identify vulnerable operations within KEM schemes
 - > SCA/FA on Kyber
- Study novel approaches for implementing Dilithium and Kyber
 - > Balance security and efficiency (changes in arithmetic used for example)
- Evaluate efficient countermeasures for Dilithium/Kyber
 - > Focus on polynomial multiplication

Future Work

- Identify vulnerable operations within KEM schemes
 - > SCA/FA on Kyber
- Study novel approaches for implementing Dilithium and Kyber
 - > Balance security and efficiency (changes in arithmetic used for example)
- Evaluate efficient countermeasures for Dilithium/Kyber
 - > Focus on polynomial multiplication

OPEN

Template: 87211168-DOC-GRP-EN-006

scument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.